ABSTRACT. In petroleum geology,
lithofacies information is important
for estimating porosity and perme-
ability values from wireline logs at the
un-cored well intervals; however, pre-
dicting lithofacies from logs is not an
easy task. The resuits of lithofacies
prediction from wireline log signals
were compared using two different

ipervised classification methods:
backpropagation neural network
(BPNN) and a simplified version of
Fuzzy ARTMAP called SFAM. The
SFAM method gives results similar
to those of BPNNs, but does not suf-
fer BPNN’s problems of excessive
training time and the need for prior
specification of network topology. If
training time and the effort required
to fine-tune BPNN parameters are
acceptable, in some cases BPNN can
provide significantly improved per-
formance. However, to achieve this
erformance will generally require
some degree of skill and a process of
trial and error. Porosity and perme-
ability predictions can be estimated
by BPNNs; however, SFAM is cur-
rently unable to perform this task, and

this requires further study.
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Accurate determination of hydraulic properties of porous me-
dia from wireline log measurements is a central problem in pe-
troleum well-log interpretation. The amount of oil recovered
from oil wells is related to both the amount of oil-in-place and
its ability to flow through the rocks. Two important measures of
this amount are the porosity of the rock, which indicates the
size of void spaces or pores in the rock, and the permeability of
the rock, which is related to the connectedness of individual
pores into flow channels. The quality of these values has a strong
impact on reservoir modeling and the subsequent management

scheme to maximize oil production.

Recent studies have shown that identification of rock types

or lithofacies prior to calculating the hydraulic prop-
erties can lead to improved estimates (Silseth et al.
1990, Alabert and Massonnat 1990, Wong et al. 1994,
1995b) because each lithofacies has its own lithohy-
draulic characteristics, such as the observable litho-
facies-specific porosity-permeability relations (Jian et
al. 1994). Some other key concepts and practices rel-
evant to petroleum reservoirs can be found in Wong
et al. (1995a). Each of the lithofacies is characterized
by its textural, diagenetic, and petrophysical proper-
ties.
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Supervised and Unsupervised
Classification

There are generally two approaches to lithofacies
classification from wireline logs: unsupervised and
supervised. The unsupervised approach, such as the
use of cluster analysis or its derivatives (Wolff and
Pelissier-Combescure 1982), requires only the log-
ging data (i.e., inputs) and forms clusters based on
the distribution of the sample data. The outcome
using this approach is usually referred to as
“electrofacies” (Serra and Abbott 1980), defined as
the set of log responses that characterizes a sedi-
ment and permits the sediment to be distinguished
from others. Although electrofacies can be obtained
from logs, it does not guarantee the presence of its
specific hydraulic properties, such as the porosity-
permeability relation. Hence, it does not have a
strong geological foundation.

The supervised or “genetic” approach (Jian et
al. 1994, Wong et al. 1995c) is a newer concept
that seeks to identify and treat each dominant
lithofacies type individually. This approach requires
use of a training data set which forms the prior
knowledge of lithofacies present in the reservoir
(i.e., target groupings). The classification is usu-
ally obtained based on textural, diagenetic, and
petrophysical properties of the reservoir. The iden-
tified groupings are used as the training data to teach
the model to relate the inputs and the target group-
ings. In this paper, we will assume that by adopting
data from a variety of sources, such as petrophysical,
depositional, and diagenetic features, a suitable set
cf lithofacies has been defined and confirmed by
experienced geologists, and each lithofacies has a
characteristic log signature.

Backpropagation neural networks (BPNNs) have
been used for supervised well-log signal classifica-
tion (Smith et al. 1991, Rogers etal. 1992, Wong et
al. 1995¢). A number of studies have shown that
BPNNs generally perform better than statistical
methods such as discriminant analysis (Parikh et
al. 1991, Yoon et al. 1993). The BPNNs, however,
also have disadvantages. Recently, a new neural
network-based pattern classification technique, us-
ing fuzzy arithmetic and adaptive resonance theory
and called Fuzzy ARTMAP, has been proposed
(Carpenter et al. 1992) to address problems faced
by use of BPNNs. This technique has not been
widely used to solve engineering problems, and the
literature includes only a few documented examples
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(Ham and Han 1993, Shahla et al. 1993, Srinivasa
and Ziegert 1993).

The aim of this paper is to determine via actual
field examples how this method performs in rela-
tion to the BPNN method in predicting lithofacies
from wireline logs. We start with a brief review of
the BPNN and Fuzzy ARTMAP methods in signal
classification and three examples from different
reservoirs. Each reservoir is a geographically dis-
tinct area and contains a number of wells. Core data
are available for two wells in each reservoir. The
core data is derived by actually measuring proper-
ties at selected locations in the well by extracting
rock samples. In each example, one well provides
the core data, which are the known outputs used in
the training phase, and the methods are then ap-
plied to a second well, where predictions of
lithofacies based on the wireline logs are compared
to core data from the second well, which were with-
held during the training phase.

Backpropagation Neural
Networks (BPNNs)

Classifying signals using neural nets can be done
in a supervised or unsupervised manner. Supervised
classification requires a set of training data with
known input-output pairings; the unsupervised
method requires only input data. As discussed pre-
viously, the genetic approach (i.e., the supervised
method) uses a training data set which, in turn, re-
quires the use of a learning rule to match the inputs
to the known (or target) outputs. Thus, unsuper-
vised techniques, such as the self-organizing algo-
rithm (Baldwin et al. 1990), are not suitable for
implementing the genetic approach. Back-error
propagation, or backpropagation, is the most widely
used learning rule in supervised neural nets. This
technique aims to approximate functions by mini-
mizing the errors between the predicted and the
target outputs (Rumelhart et al. 1986).

A typical BPNN contains three kinds of layers:
input, hidden, and output. Each layer consists of a
number of neurons. The numbers of input and out-
put neurons depend on the dimension of the input
vector and the number of categories in the problem
of interest, respectively. The optimum number of
neurons in the hidden layer is a difficult question
that usually requires a trial-and-error method to an-
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swer. Each neuron in a layer connects to all neurons
in the next layer. The connection between biological
neurons is known as a synapse. During learning, the
strength of each synapse is changed, either strength-
ened or weakened. In BPNNSs, the strengths of these
synapses are simulated by weights. The aim of train-
ing BPNNs is to determine the weights in each con-
nection in such a way that the errors between the
predicted and target outputs are minimized. When a
suitable minimum is found, the weights are fixed and
the training stage is terminated. Details of BPNNs
can be found in Dayhoff (1990).

Practical Difficulties
in Using BPNNs

. Before beginning training, a pre-specified net-
work topology (such as the number of hidden lay-
ers and the number of neurons in each hidden layer)
is required. Too few layers and neurons will not
learn satisfactorily, and too many of these elements
will memorize the training patterns (Dayhoff 1990).
The amount of training time (measured in number
of iterations, or epochs) is also important because
excessive training time can also lead to memoriza-
tion of input patterns. Therefore, a careful moni-
toring of training time is required. This is usually
done by using a test data set (i.e., a set of known
input-output data withheld from the training pro-
cess) to validate the model and terminate training
before generalization capability degrades. Also, the
weight values in all connections must usually be
initialized to some small random numbers before
training starts to break the symmetry between oth-
rwise identical hidden neurons. Randomizing the
weights in an inappropriate range of values will
lead to slow convergence (Wessels and Barnard
1992) because large initial weights impose a large
random bias for the network to unlearn. The values
of the other parameters, such as learning rate and
the momentum term, are also important in the train-
ing phase (Dayhoff 1990).

Because a large number of parameters can be
adjusted to improve the performance of BPNNSs, it
is very difficult to obtain an optimum set of param-
eters that gives the uest results. Another problem
in using BPNNSs is that, once the neural net is trained,
it is not easy to incorporate new knowledge, and it is
necessary to re-train the neural net with the incre-
mental knowledge—a time-consuming process. A
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new supervised classification technique, called
Fuzzy ARTMAP, addresses some of these problems.

Fuzzy ARTMAP

Application of adaptive resonance theory (ART)
in signal processing was proposed by Grossberg
(1976a, b) and was originally used for unsupervised
classification. Recently, Carpenter et al. (1991) de-
veloped a model (a hybrid method), called
ARTMAP, by combining supervised and unsuper-
vised methods for mapping known input-output
patterns. At a later stage, fuzzy set theory (Zadeh
1965, Kosko 1986) replaced the traditional set
theory used in the supervised ARTMAP method
and, hence, the name Fuzzy ARTMAP (Carpenter
etal. 1992) was coined. Kasuba (1993) also reported
a simplified version of Fuzzy ARTMAP, called
SFAM; however, the application of Fuzzy ARTMAP
or SFAM for signal processing is poorly docu-
mented. In this paper, SFAM is used for the compari-
son study because of its simplicity compared to the
Fuzzy ARTMAP.

The SFAM model is based on a simple neural
network. It has all the advantages of BPNNs but
does not suffer from the problems (such as weight
values initialization, network topology optimization,
and the amount of training time required for the
iteration process) that were discussed previously.
SFAM has three layers: input, prototype, and out-
put (or category) layers. The input layer is com-
posed of neurons, the number of which depends
upon the dimension of the input vector. No initial
neurons in the prototype layer are required to start
the network. The number of neurons grows depend-
ing upon the complexity of the problem during su-
pervised learning. Each category is assigned to a
neuron in the output layer and, hence, the number
of output neurons is the same as the number of
known categories in the problem.

SFAM Learning Procedure

When the training patterns are presented to the
network, each neuron in the input layer receives
the signals and distributes this information to the
prototype layer. If the category of the input signals
has not been seen by the network, it will create a
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neuron in the prototype layer to represent this cat-
egory and will connect it to the appropriate output
neuron. The weights connecting the input neurons
and the newly formed prototype neuron are set equal
to the values of the input vector. For the prototype-
to-output connections, a logical OR operation is per-
formed. The output layer is used only to record the
identity of the prototype neurons.

The number of prototype neurons is at least equal
to the number of output neurons (i.e., number of
categories). For the trained network, the number of
prototype neurons for each category may be larger
than one (Figure 1). The actual number depends on
the complexity of the data set. For example, if the
number of prototype neurons for “sandstone” cre-
ated after training is three, it may mean that these
three neurons represent three subclasses of sand-
stone, such as “fine-grained sandstone,”
grained sandstone,” and “coarse-grained sand-
stone.” In BPNNs, using only one output neuron to
represent the category “sandstone” in order to learn
and incorporate differences among grain sizes may
take a considerable amount of training time.

When the category of a new pattern has been
seen by the network, new activation functions and
match functions are determined for all of the proto-
type neurons. These functions calculate the degree
to which the weight vector is a fuzzy subset of the
mput vector (i.e., the activation function value, 7)
and the degree to which the input vector is a fuzzy
subset of the weight vector (i.e., the match function

medium-

Output Category

Output Layer

Prototype Layer

Input Layer

Figure 1. Schematic diagram of an SFAM network.
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value, M). For details of the calculation of degrees of
fuzzy subset membership, see Kasuba (1993). Using
fuzzy logic, it is possible to calculate the degree one
vector is a fuzzy subset of another vector; this is
analogous to finding the degree of similarity between
the vectors.

The M value of the prototype neuron with the
maximum 7 value (i.e., the winning neuron) is then
compared to a parameter called the vigilance term,
p. The vigilance term ranges from 0 to 1, and must
be specified before training starts. If the M value is
less than the p value, the network is said to be in a
state of mismatch reset, which means the winning
prototype neuron is not good enough to encode the
current input pattern and, hence, another prototype
neuron with the same category as that pattern must
be created. On the other hand, when the M value is
greater than the p value, the network state is called
resonance (or reset). which means the winning pro-
totype neuron is good enough to encode the cur-
rent input pattern, and the weights connecting the
input neurons and the winning prototype neuron
can be updated, provided the category of the win-
ning neuron is the same as the category of the input
pattern. If, however, the category of the winning pro-
totype neuron is not the same as the category of the
input pattern (which we know because this is train-
ing data and labeled with the category), the state of
the network is called category mismatch, which
means the chosen vigilance (i.e., the baseline or low-
est value) is too small for the system. The network
will then increase the vigilance value by an appro-
priate amount, and another test on the next highest
M value is done. The amount of increase required
can be readily calculated automatically so that the
category mismatch is no longer true for the current
pattern. Therefore, the value of the vigilance term is
monotonically increasing during learmning. Generally
speaking, a high vigilance causes a greater number
of prototype neurons to form. If the vigilance is set
too high initially, larger numbers of prototypes are
formed, which reduces the ability of the network to
generalize. A simple flow chart for SFAM in an ep-
och is shown in Figure 2.

The weight update in the SFAM model is based
on the fuzzy AND (Zadeh 1965) operator of the
input and the weight vectors:

wi{t + 1) =B XA W; )+ (1 -0) ()
where wj; is the weight connecting the input neuron

Al Applications
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i and winning prototype neuron j, X is the input vec-
tor, W; is the vector of weights connecting inputs to
prototype neuron j, B is the learning rate (analogous
to the learning rate of BPNNs), and ¢ is incremented
by 1 for each update. Note that the learning rate and
the baseline vigilance term are the only user-select-
able parameters in the SFAM model. The “A™ is the
fuzzy AND operator. It is simply the minimum of each
of the components of two vectors:

X A W (0); = min [x;w;; (1) )
where x; is the corresponding component of the
vector X. Further details can be found in Kasuba
(1993). The main similarities and differences of
BPNNs and SFAM models for pattern classifica-
tion are shown in Table 1.

After training, all the weights on the input-to-
prototype connections are fixed, and each prototype

Table 1. Comparison of BPNNs and SFAM models.

neuron has a category assigned to it (Figure 1). For
patterns with unknown categories, each input pat-
tern can be simply presented to the network, and the
activation function value T is calculated for each
prototype neuron. A winning prototype neuron (i.e.,
the one with the highest 7) is chosen, and the net-
work assigns the category of the connected output
neuron to this input pattern.

Case Examples

The data used in this study came from three oil-
bearing reservoirs located in the Carnarvon Basin
of the North West Shelf, Australia. In each example,
two wells from each reservoir were used to provide
the wireline log and core readings. The data from
the first well was used to construct the training data

BPNNs

SFAM

Classification system
hyper-plane classifier.

Supervised learning; non-linear;

Hybrid (supervised and
unsupervised) learning; non-linear;
hyper-rectangle classifier.

Model assumption

None.

None.

Network topology

Pre-set number ot neurons in the
hidden layer; one output neuron for
each category.

Number of prototype neurons for
each category depends on
complexity of the problem; self-

organizing.
Initial weights Random initialization. None.
Learning rate Present. Present.
Momentum term Present. Absent
Vigilance term Absent. Present.
Data normalization Required. Required.

Updating method

On-line or off-line.

On-line or off-line.

Incremental learning

Difficult to incorporate new

Easy to incorporate new

knowledge; have to re-train the knowledge.
whole data set.
Learning time Slow. Fast.

Neuron algorithm

Linear combination of input signals
with weights; use of a sigmoid
transfer function.

Calculate the degree to which the
weight vector is a fuzzy subset of
the input vector (i.e., the activation
function value).

Weight modification

Backpropagation of error.

Using the fuzzy AND operator.
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set, which was then used to classify the log signals
from the other well where core data was available
for comparison purposes; hence, the performance
of the different methods can be evaluated.

Data Sets and Procedure

Table 2 summarizes the data used in this com-
parison. This table shows the number of data points
used in the training phase and the test phase, the
wireline logs used, and the description of each
lithofacies for each of the three reservoirs (A, B, and
C). The lithofacies were identified by a geologist in a
manner consistent with the genetic concepts defined
~ earlier. Note that the data used for training were from
one well and the test data were from the other well in
the same reservoir. Figure 3 displays some data cross-

‘s for these reservoirs. The crossplots show that
some rock types can distinguished from the other
rock types. However, overall there is significant over-
lap in the values in any pairs of input variables; this
is primarily due to the presence of heterogeneities.

In the BPNN experiment, the numbers of input
and output neurons were, respectively, three (the
three log variables) and six (the six lithofacies). Six
hidden layer neurons gave the best performance for
all cases by trial and error. Weights can be updated
in either on-line (stochastic updating) or off-line
(epoch updating). For the on-line method, each
weight is updated on a pattern-by-pattern basis,
while for the off-line method, the weight changes

Wong et al.: Fuzzy ARTMAP to Predict Lithofacies

are accumulated for all the training patterns in an
epoch before updating is done. Because the on-line
method requires more computational time in BPNNs,
off-line learning was used. The learning rate and
momentum term were both set to 0.1. Each of the
three training data sets was trained for 10,000 ep-
ochs, which was chosen to be well past the optimum
stopping point. Each network was run 10 times with
different sets of initial weights. The corresponding
test data were also used to record the highest classi-
fication accuracy during the training phase. Only
the results with the highest classification accuracy
on the test data set will be shown. This process of
selecting the network training time as the point when
the error on the test set is minimum is called cross
validation. Cross validation maximizes the generali-
zation performance as the test data is used to stop
the network or, in our case, to mark the epoch and
weight values to be used. In practice, it is always
necessary to save the minimum network state and
continue training in order to avoid selecting the first
local minimum as the stopping point.

In the SFAM method, the learning rate and
baseline vigilance terms were set to 0.5 and 0.4,
respectively. These parameters were chosen by trial
and error. Note that SFAM does not require the prior
specification of the number of prototype neurons.
Since SFAM requires much less computational time,
the on-line weight updating was chosen. The per-
formance of this learning method depends on the
presentation sequence of the input patterns and,

Table 2. Description of data sets. Note thaty, PEF, ILD, and DT represent the gamma ray, photoelectric adsorption
‘ex, deep induction resistivity, and sonic travel times, respectively.

Train Test

Reservoir (Well 1) (Well 2) Logs Used

Lithofacies

A 181 155

v, ILD, DT

“17": Mudstone.

“27: Sandy Mudstone.

“3™: Muddy Sandstone.

“4”: Sandstone.

“57: Carbonate-Cemented Beds.
“6”: Carbonate Concretions.

v, PEF, RHOB “17: Mudstone.

“27: Sandy Mudstone.

“3”: Interbedded Sand/Mud.
“4”: Muddy Sandstone.

“5”: Sandstone.

“6”: Carbonate-Cemented Beds.

v, PEF, RHOB

Same as reservoir B.

Vol. 10, No. 3, 1996
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Figure 3. Wireline logs and core data for different reservoirs. Note thaty, PEF, ILD, and DT represent the gammaray,
photoelectric adsorption index, deep induction resistivity, and sonic travel times, respectively.
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hence, improved performance can be achieved by
training the system several times using different
orderings of the patterns. In this study, 10 sets of
different pattern orderings were used. Each train-
ing data set was run for 10 epochs (chosen to be
well past the optimum of epochs), and the test data
were used to record the classification accuracy dur-
ing training. Again, only the results with the best
performance are reported.

Results

The results of the three examples are shown in
Table 3. SFAM has the capability of pattern memori-
zation, and a high recognition rate (%) is the usual
result for the training data. This is not an impor-

't issue, as the performance of the different meth-
ous was measured on the test patterns, not the train-
ing patterns. In reservoir A, the BPNN performed
the best; however, it took more than 5,300 epochs
to achieve this result. Although the SFAM method
performed less well, it took only one epoch (with
36 prototype neurons resulting) to obtain results.
In reservoir B, the SFAM method gave the best per-
formance in two epochs (with 40 prototype neu-
rons). In reservoir C, the SFAM method provided
the best results (with 21 prototype neurons) on the
test set compared to the BPNN.

Table 4 shows the number of prototype neurons
automatically created for each lithofacies after train-
ing in the SFAM network. It is important to note
that the numbers displayed relate directly to the
complexity of the problem domain. For example,
the lithofacies “1” for reservoir C requires only 1

ron. That means that this lithofacies has very
distinct properties, and the network is able to easily
discriminate it from other groups. On the other
hand, lithofacies “2” in reservoir C requires 7 neu-
rons to represent, and hence this lithofacies is very
difficult to resolve (see also Figure 3c).

Discussion

From the case examples presented, the SFAM
method provides good results compared to the
BPNN method. The BPNN method in pattern rec-
ognition is a powerful technique; however, it suffers
from some practical problems such as the long train-
ing time requirement and the large number of param-
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eters modifiable for improving the network perfor-
mance. [n most cases, obtaining an optimum set of
network parameters is a difficult task. In the reser-
voir B and C examples, the BPNN did not give the
best results, but it does not mean that it could not.
We can alter some other network parameters, such
as the transfer function used in each neuron and the
use of on-line training method (and different pattern
orderings), to improve its performance in terms of
both the training time requirement and classification
accuracy. However, in practice, time is usually an
important constraint for professionals to analyze a
large amount of data.

In contrast, the SFAM method gave very good
results within only a small number of iterations (usu-

Table 3. Lithofacies clussification results (measured in percent correct
classification, %). The “n" in the "Remarks" column represents the number of
prototype neurons automatically created after SFAM training.

Train Test
(Well 1) (Well 2) Remarks

Reservoir A No. data pts 181 155

BPNN 76.2 76.1 5.382 epochs.

SFAM 85.6 64.5 I epoch; n=36.
Rescervoir B No. data pts 87 53

BPNN 67.8 58.5 416 cpochs.

SFAM 96.6 60.4 2 epochs; n=40.
Reservoir C No. data pts 56 41

BPNN 69.6 73.2 250 epochs.

SFAM 96.4 75.6 1 epoch; n=21.

Table 4. Number of prototvpe neurons created for each lithofacies during SFAM

training.
Lithofacies
Reservoir 1 2 3 4 5 Total
A 5 5 10 6 5 5 36
B 35 13 3 9 3 7 40
C 1 7 3 4 1 5 21
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ally less than five). Moreover, the number of net-
work parameters is much less compared to BPNNs.
This means that getting the best performance takes
a relatively short time, and the end result is a fast
method for pattern recognition.
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